Laser Use in the Electronics Industry
Laser beam sources have been very common in the semiconductor sector since the 1990s. Whereas, initially, components were marked and labelled at the end of the production line, today, there are many more production steps. These steps range from drilling, separating elements (dicing), cutting wafers, metals, and plastics through to lighting for troubleshooting with intermediate products andvariousthermal processes. Depending on the application, an array of pulsed CW laser systems with a very broad power range from sub-mW to multi kW are used.
Looking at two fields of application for diode lasers as an example, there are lasers in the optoelectronic testing of wafers to analyze defect bridge elements, tungsten residues or scratches in the oxide layers. This enables defective wafers to be recognized well before any further processing, thus enabling them to be removed in good time. A second field of application is the brazing of electronic components with solutions that are individually tailored to different customers. The use of lasers represents a genuine alternative to reflow soldering, especially for complex electronic components such as flip chips.